
SEMIS Fall Professional Development Day 9/30/2016

Place-based education balances...

Backward Mapping

Exhibition/Problem Challenge

Student questions

Student project choice

Choice of student actions

Backwards Mapping

Not always a linear process!!

+

Unit/Learning Plan

Lesson Plans

Activities/Events

Field Trips/Speakers

How will I teach them?

Assessment

Formative

Summative

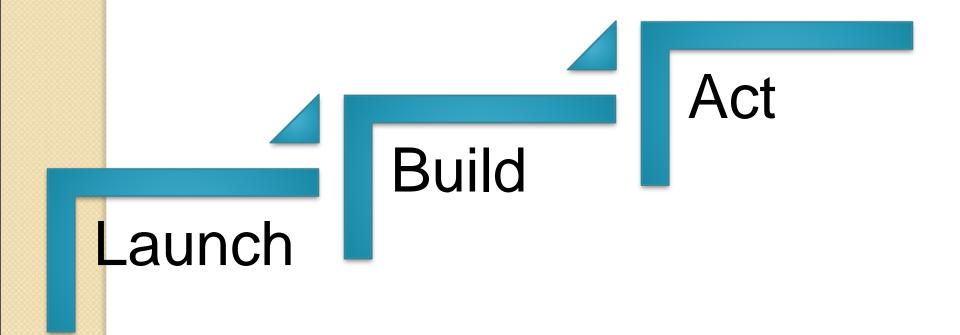
Authentic

How will they show me they understand?

End Result

What do I want them to understand & be able to do?

Create concept maps of big ideas


Identify project and learning goals and culminating experiences

Identify standards

Connect to existing curriculum

Sketch a timeline/pacing

Three stages of PBE curriculum

Levels of Inquiry

Inquiry is not all or nothing! Using an Inquiry approach takes practice and scaffolding for students.

Amount of information provided

Figure 2 presents a modified version of the four-level model of inquiry we use to assess our instructional activities. The four-level model illustrates how inquiry-based activities can range from highly teacher directed to highly student centered, based on the amount of information provided to the student. The salient feature of this model is the question, "How much information is given to the student?"

Using this framework as a guide, lab activities can be designed at varying levels of inquiry, depending on wording and presentation. This model allows the teacher to tailor inquiry lessons to the particular readiness levels of the class. For

instance, a Level 1 activity can become a Level 2 by having students complete it prior to learning the targeted concept, and a Level 2 activity can be revised easily to Level 3 simply by removing the procedural directions.

level m	odel of inqu	P. Modified version of the four- odel of inquiry. How much ion is given to the student?			
Level of inquiry	Question?	Methods?	Solution?		
1	Х	X	Х		
2	Х	Х			
3	X				
4					

Levels of Inquiry

Figure 3. Levels of inquiry in an effervescent antacid tablet activity. Reprinted with permission from Rezba, Auldridge, and Rhea (1999).

Inquiry level	Description and examples	
1	Confirmation —Students confirm a principle through an activity in which the <i>results are known in advance</i> . "In this investigation you will confirm that the rate of a chemical reaction increases as the temperature of the reacting materials increases. You will use effervescent antacid tablets to verify this principle. Using the following procedure, record the results as indicated, and answer the questions at the end of the activity."	
2	Structured inquiry—Students investigate a teacher-presented question through a prescribed procedure. "In this investigation you will determine the relationship between temperature and the reaction rate of effervescent antacid tablets and water. You will use effervescent antacid tablets and water of varying temperatures. Using the following procedure, record the results as indicated, and answer the questions at the end of the activity."	
3	Guided inquiry —Students investigate a teacher-presented question using <i>student designed/selected procedures</i> . "Design an investigation to answer the question: What effect will water temperature have on the rate at which an effervescent antacid tablet will react? Develop each component of the investigation including a hypothesis, procedures, data analysis, and conclusions. Implement your procedure only <i>when it has been approved by your teacher</i> ."	
4	Open inquiry—Students investigate topic-related questions that are student formulated through student designed/selected procedures. "Design an investigation to explore and research a chemistry topic related to the concepts we have been studying during the current unit on chemical reactions. Implement your procedure only when it has been approved by your teacher."	

Inquiry woven into standards

BOX S-1

THE THREE DIMENSIONS OF THE FRAMEWORK

1 Scientific and Engineering Practices

- Asking questions (for science) and defining problems (for engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- Constructing explanations (for science) and designing solutions (for engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

2 Crosscutting Concepts

- 1. Patterns
- 2. Cause and effect: Mechanism and explanation
- 3. Scale, proportion, and quantity
- 4. Systems and system models
- 5. Energy and matter: Flows, cycles, and conservation
- 6. Structure and function
- 7. Stability and change

3 Disciplinary Core Ideas

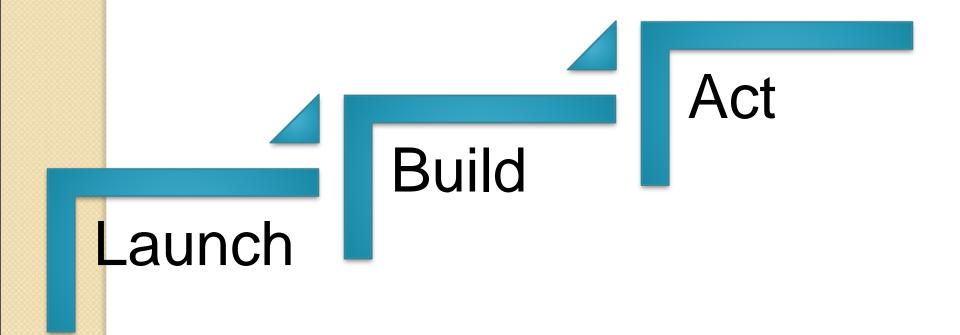
Physical Sciences

PSI: Matter and its interactions

PS2: Motion and stability: Forces and interactions

PS3: Energy

PS4: Waves and their applications in technologies for information transfer


THE INQUIRY ARC OF THE C3 FRAMEWORK

Narrative of the Inquiry Arc of the C3 Framework	10
Overview of the Connections with the English Language Arts/Literacy Common Core Standards	20
DIMENSION 1. Developing Questions and Planning Inquiries.	23
English Language Arts/Literacy Common Core Connections	. 20
DIMENSION 2. Applying Disciplinary Concepts and Tools	29
CIVICS	. 31
Civic and Political Institutions	
Participation and Deliberation: Applying Civic Virtues and Democratic Principles	
Processes, Rules, and Laws	

C3 Framework • 3

	ECONOMICS
	Economic Decision Making
	Exchange and Markets
	The National Economy
	The Global Economy
	GEOGRAPHY
	Geographic Representations: Spatial Views of the World
	Human-Environment Interaction: Place, Regions, and Culture
	Human Population: Spatial Patterns and Movements
	Global Interconnections: Changing Spatial Patterns
	HISTORY
	Change, Continuity, and Context
	Perspectives
	Historical Sources and Evidence
	Causation and Argumentation
	English Language Arts/Literacy Common Core Connections
DIN	IENSION 3. Evaluating Sources and Using Evidence
	Gathering and Evaluating Sources.
	Developing Claims and Using Evidence
	English Language Arts/Literacy Common Core Connections
DIN	MENSION 4. Communicating Conclusions and Taking Informed Action
	Communicating and Critiquing Conclusions.
	Taking Informed Action.
	English Language Arts/Literacy Common Core Connections

Three stages of PBE curriculum

Entry points for PBE planning

Culminating project or experience

Current environment al or social event in the news

Community partner suggests a project

Community
Mapping and
Inventories

Identified Standard

Assessment Idea

Student asks a question, identifies need Curriculum unit

Examples of Entry Points:

Entry Point	Example
Culminating project or experience	MI Sea Grant boat experience,BioswaleOutdoor learning space
Identified Standard	Neinas Elementary – Scientific Method/ UofM Dearborn partnership
Community partner suggests a project	Friends of the Rouge – River Education Project
Assessment Idea	Mural Project
Student asks a question, identifies need	Abandoned lots near schools
Curriculum Unit	Rudolf Steiner
Current environmental or social event in the news	Flint Water Crisis Ann Arbor Dioxane Plume Detroit Flooding
Community Mapping & Inventories	Neinas neighborhood walks